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Atmospheric drought in Belgium – statistical analysis
of precipitation deficit
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ABSTRACT: The principle of return periods or frequencies of natural hazards is adopted in many countries as the basis of
eligibility for the compensation of associated losses. For adequate risk management and eligibility in Belgium, hazard maps for
drought events with a 20-year return period are needed. The maximum precipitation deficit in the summer half-year (1 April–30
September) was taken as a good indicator for atmospheric drought severity during a particular year. Precipitation deficit is
calculated as a cumulative balance between precipitation and evapotranspiration for a free open water surface, short grass,
deciduous forest and coniferous forest. Precipitation deficit maxima were modelled with the generalized extreme value (GEV)
distribution. Mapping precipitation deficit return levels is based on a GEV distribution where the parameters vary smoothly in
space as a function of altitude and distance to the sea. The final products are return level maps of extreme precipitation deficit,
relevant for insurance companies providing cover for the forestry and agriculture sector.
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1. Introduction

During the last century, drought events have had marked
influences on forest and agricultural ecosystems in Europe
(Olesen and Bindi, 2002; Maracchi et al., 2005; Orlandini
et al., 2008; Reidsma et al., 2009). In general, drought is
considered as an extended period of deficiency in water
supply (Beran and Rodier, 1985; Rossi, 2000). Drought
is a complex phenomenon which is difficult to monitor.
The absence of a precise and universally accepted def-
inition adds to the confusion whether or not a drought
exists, and if it does, what its degree of severity is. Some
droughts can persist for several years, and even short,
intense droughts can cause significant damage and harm
to the local economy. The spatio-temporal complexity of
drought makes it more difficult to establish a threshold
for each level of severity, and these thresholds should
be associated with the anticipated damages (economic,
agricultural, social, etc.) that a drought may exert on a
certain region. Based on a thorough review of drought
definitions (Dracup et al., 1980; Wilhite and Glantz,
1985), six different drought categories are identified:
meteorological, climatological, atmospheric, agricultural,
hydrological and water management. Meteorological
droughts, for example, defined as precipitation shortage in
absolute amounts for a given period, often occur in Bel-
gium (Brouyaux et al., 2008). However, more relevant to
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vegetation is atmospheric drought, which is defined not
only in terms of precipitation shortages but also in terms
of temperature, humidity and wind speed.

A wide range of literature exists on the issue of drought
estimations at specific locations (Beran and Rodier, 1985;
Tallaksen and Hisdal, 1997; Hisdal et al., 2001), but not
many studies deal with the spatial estimation of drought
risk. As droughts are regional in nature and commonly
cover large areas and extended time periods, it is important
to study such events within a regional context. Regional
drought analyses are often based on single site event
definitions where the areal aspect is included by study-
ing the spatial pattern without introducing a separate,
regional drought event definition. Different approaches
to regional drought analyses have been reviewed by
Rossi et al. (1992), applying lack of precipitation as an
example.

Extreme value theory (EVT) (Coles, 2001; Beirlant
et al., 2004) characterizes the behaviour of extreme obser-
vations. A reliable prediction of the likelihood of rare but
plausible events, allows EVT to be applicable in many
domains of environmental research, e.g. climate (Naveau
et al., 2005), hydrology (Katz et al., 2002), soil analy-
sis (Goegebeur et al., 2005). One of the most important
methodologies in EVT is block-maxima methods, which
model the largest values collected from large samples of
observations. A major result of EVT is that the general-
ized extreme value (GEV) distribution is the only pos-
sible limit distribution of properly normalized maxima
of a sequence of independent and identically distributed
(iid) random variables. The tail behaviour of the GEV
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distribution allows for the estimation of return levels for
associated return periods considerably beyond the end of
the data to which the model is fitted.

A large part of this article is devoted to the problem of
how to model the spatial characteristics of extreme pre-
cipitation deficit, and its spatial mapping on the basis of
EVT. In general, the problem of mapping return levels
of a certain climatological variable involves the definition
of marginal distributions at single sites, and subsequently
translating the distribution parameters to a regional level
using spatially continuous variables. Spatial GEV mod-
elling allows to predict extreme events at locations for
which no observations have been available. The advantage
of the spatial GEV modelling approach is that it can be
used to consider problems concerning the aggregation of
regional processes over a country, and interpolation within
a region can be accomplished, e.g. for extreme rainfall
(Gellens, 2002; Cooley et al., 2007; Sang and Gelfand,
2009; Padoan et al., 2010; Westra and Sisson, 2011; Van de
Vyver, 2012; Dyrrdal et al., 2015), snow depth (Blanchet
and Lehning, 2010) and hurricane-induced wave heights
(Northrop and Jonathan, 2011).

With more than 50% coverage of the Belgian terri-
tory, forestry and agriculture represent important drought
impact sectors. The Government Disaster Fund is designed
to compensate losses associated with a 20-year return
period and beyond. In line with this demand, the major
objectives of this study are (i) to quantify drought in terms
of precipitation deficit, (ii) to investigate whether EVT
is applicable to extreme precipitation deficit, and (iii) to
determine spatial return levels of extreme precipitation
deficit, relevant for insurance companies providing cover
for the forestry and agriculture sector.

2. Climatological methods

2.1. Precipitation deficit as a drought indicator

Summer drought may have a negative influence on veg-
etation growth in Belgium. The potential evapotranspira-
tion (PET) rate has been widely used as an estimate of
vegetation water requirements (Williams et al., 2012), and
as part of an index in defining the aridity of a climate
(Kingston et al., 2009). Precipitation deficit is defined as
the cumulative difference between daily PET and daily
precipitation. When the precipitation deficit becomes neg-
ative it is reset to zero. Around early April the average
daily evapotranspiration becomes larger than the average
daily precipitation; a deficit can therefore accumulate from
April onwards. After September, the precipitation deficit
tends to decrease as evapotranspiration reduces and rain-
fall increases. In the Netherlands, the precipitation deficit
is defined as the cumulative difference between precipi-
tation and evaporation from April to September (Beersma
and Buishand, 2004, 2007). In line with the approach of the
Food and Agricultural Organization of the United Nations
(FAO) to defining the daily precipitation deficit during the
growing season (FAO, 1978), we halve the evapotranspi-
ration rate so that we do not overestimate the occurrence

of drought stress:

PD = 1
2
× PET − P (1)

where PET is the daily potential evapotranspiration (mm),
and P is the daily precipitation (mm). The precipitation
deficit maxima is the largest daily precipitation deficit
during the year which for each station and each year occurs
during the summer half-year (1 April–30 September).

PET has been estimated using the Bultot method (Bultot
and Dupriez, 1973; Bultot et al., 1983, 1988), which is
developed specifically for Belgium. The Bultot method
modifies the Penman equation (Penman, 1948) to estimate
reference daily evaporation, E0 (mm), for a free and open
water surface, and the Monteith equation for net terrestrial
radiation (Monteith, 1973). The daily PET of a natural
surface such as an open water surface, grass, deciduous
forest and coniferous forest, is subsequently derived from
an analytical expression containing the natural surface
reflection coefficient (Monteith, 1973; Bultot et al., 1983).

2.2. Data and climate

Belgium has a temperate maritime climate influenced by
the North Sea and Atlantic Ocean, with cool summers
and mild winters. Because the country is small and pre-
dominantly flat, there is little variation in climate from
region to region, although the marine influences are less
inland. Rainfall is distributed throughout the year with a
drier period from April to September. Breezy conditions
occur more in the winter than in the summer, and more
among the coastal areas than inland. The hills of the east-
ern regions cause a cooler and wetter climate with more
rainfall. The Köppen–Geiger climate classification is Cfb:
the warmest month is lower than 22∘ C on average and 4
or more months are above 10∘ C on average.

All data were collected by the Royal Meteorologi-
cal Institute (RMI) of Belgium. At Uccle (50∘47′55′′

N, 4∘21′29′′ E, 100 m a.s.l.), all variables necessary for
calculating PET of free open water surfaces and grass
were registered on a daily basis for 105 years between
1901 and 2005 (Bleiman, 1976). Daily precipitation values
(0:00–0:00 UTC) are available for a 116-year period from
1898 onwards (Demarée, 2003). Daily PET-series were
calculated for open water surface, grass, coniferous and
deciduous forest, for the period 1967–2005 for 12 addi-
tional stations across the country (Gellens-Meulenberghs
and Gellens, 1992), see Table 1 and Figure 1. The same
stations provide daily precipitation measurements during
the same period. In 2006, the instruments were replaced by
automatic weather stations. The latter measurements are
not considered in the study, because the series are not long
enough for an extreme value analysis.

In contrast with the Uccle series, some stations display
long periods with missing data for both precipitation and
PET. Despite this drawback, the network provides impor-
tant information on regional differences in PET. In obtain-
ing annual maxima precipitation deficit series, the years
containing more than 10% missing values (either from
precipitation or PET data sets) in the summer half-year
were not considered.
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Table 1. Characteristics of the 13 stations (cf. Figure 1): altitude,
mean annual PET (mm) for open water surface, mean annual
precipitation (mm) and the number of annual maxima (AM)

precipitation deficit.

Station Alt (m) PET Precipitation # AM

1 Koksijde 5 773.5 678.3 32
2 Melle 17 704.6 703.8 39
3 Mol 23 671.7 694.4 26
4 Uccle (water and grass) 100 683.2 822.8 105

Uccle (forest) 39
5 Wasmuel 25 672.2 691.3 31
6 Ernage 159 693.2 728.3 29
7 Forges 318 661.4 1013.8 33
8 Bierset 191 706.6 843.1 38
9 Spa 483 731.9 1120.6 35
10 Rochefort 193 654.1 739.7 33
11 Carlsbourg 408 653.1 1192.1 19
12 St Hubert 556 681.8 1074.1 38
13 Lacuisine 298 624.4 1113.2 32

The mean annual values were calculated for the available years, except
for Uccle, where the mean annual precipitation was calculated for
1967–2005, instead of 1898–present.

3. Statistical methods

3.1. Probability distribution for precipitation deficit
maxima

One of the most important methodologies in EVT is con-
cerned with the statistical behaviour of block maxima
(Coles, 2001; Beirlant et al., 2004), i.e.

Mm = max
{

X1, … ,Xm

}
(2)

where X1, … , Xm is a sequence of independent and iid
random variables. In practice, X1, … , Xm is, for instance,

a time series of daily precipitation (Katz et al., 2002). In
this work, Xj is related to the precipitation deficit at the
jth day in the summer half-year, as defined in Section
2.1. The summer half-year maximum precipitation deficit
corresponds with Mm and block size m= 183. A key result
is that, under regularity conditions, Pr{Mm ≤ z} can be
approximated by the GEV distribution for large m-values.
This is a three-parameter family of functions

G (z;𝜇, 𝜎, 𝜉) = exp

[
−
(

1 + 𝜉
z − 𝜇

𝜎

)−1∕𝜉
]

(3)

where the location-parameter (𝜇) specifies the centre of
the distribution; the scale-parameter (𝜎) determines the
size of deviations in the location parameter; and the
shape-parameter (𝜉) governs the tail behaviour of the dis-
tribution. For sufficiently long time series, it is customary
and convenient to extract the block maxima, generating a
block maxima-series. Pragmatic considerations often lead
to the adoption of 1 year blocks, but monthly or seasonal
maxima are also considered (Katz et al., 2002).

The GEV-distribution was fitted to the block
maxima-series by the maximum likelihood estimator
(MLE). For a given sample z= (z1, … , zk)T of iid GEV
random variables, the log-likelihood function is

l (𝜓) =
k∑

i=1

log g
(
zi;𝜓

)
(4)

with 𝜓 = (𝜇, 𝜎, 𝜉) the vector of GEV-parameters, and
g(z;𝜓) the probability density function. The MLE �̂�
is obtained by maximizing the log-likelihood function
with respect to 𝜓 . Function fit.gev in R-package ismev
(Stephenson, 2012), for example, performs MLE.
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Figure 1. Elevation map (m) of Belgium, together with the position of the 13 stations where the PET-series were obtained.
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An easy-to-understand measure of extreme events is the
return level. The return period T associated with the return
level zT is defined as the average period of time between
exceedances of zT :

T = 1

1 − G
(
zT

) (5)

see Coles (2001), Beirlant et al. (2004). Conversely, the
return level zT is defined as a value which, on average, is
exceeded once in T years. This is obtained by inverting
Equation (5):

zT = 𝜇 − 𝜎

𝜉

{
1 −

[
− log

(
1 − 1

T

)]−𝜉}
(6)

3.2. Spatial mapping of precipitation deficit maxima

The assessment of ecosystem vulnerability to water deficit
requires a regional drought analysis. However, estimating
the return level of extreme meteorological events is diffi-
cult because of limited temporal records. This means that
we need to interpolate the distributions to locations where
observations are not available. Isoline maps are extensively
used to analyse the most severe historical droughts (Rossi
et al., 1992). Here we discuss a technique for mapping
extreme precipitation deficit on the basis of EVT. Let Xj(r)
denote the cumulative precipitation deficit at day j, and at
location r (expressed in longitude/latitude, or other geo-
graphic coordinates). Let Mm(r) denote the precipitation
deficit maximum at location r:

Mm (r) = max
{

X1 (r) , … ,Xm (r)
}

. (7)

The main goal of spatial estimation of extremes is to
provide inference for the probability P{Mm(r)< z} for all
locations r within a certain region, in our case Belgium.

3.2.1. Smooth spatial GEV modelling

The spatial GEV model of Mm(r) is given by

Mm (r) ∼ GEV [𝜇 (r) , 𝜎 (r) , 𝜉 (r)] , (8)

where the parameters 𝜇(r), 𝜎(r) and 𝜉(r) are modelled
as a function of explanatory variables, hereafter referred
to as spatial covariates. Examples of such covariates
are elevation and longitude/latitude. Once the spatial
GEV-parameters 𝜇(r), 𝜎(r) and 𝜉(r) are estimated, and
covariate information is available on a dense grid, return
level maps can be plotted easily using Equation (6).

Let 𝜂 denote one of the GEV-parameters. We model
𝜂(r) as a linear relationship with spatial covariates
C1(r), … , Cp(r):

𝜂 (r) = 𝜂(0) +
p∑

i=1

𝜂(i)Ci (r) . (9)

Because the shape parameter 𝜉 determines the nature
of the tail of the GEV-distribution, its value has a sig-
nificant influence on the severity of very extreme events.
Unfortunately, no matter what model and estimation
method are selected, this parameter is difficult to estimate,

especially for data records of relatively short length. A
commonly used assumption in the spatial modelling of
GEV parameters is that 𝜉(r)= 𝜉 is constant over relatively
small study regions (Gellens, 2002; Cooley et al., 2007;
Sang and Gelfand, 2009; Blanchet and Lehning, 2010;
Padoan et al., 2010; Northrop and Jonathan, 2011; Westra
and Sisson, 2011; Van de Vyver, 2012; Dyrrdal et al.,
2015).

3.2.2. Model estimation and selection

Inference was done by maximization of the log-likelihood
which includes multi-site data. Let the response zij be the
maximum precipitation deficit at the ith site in year j, and
ri be the coordinate of the ith site. For a given sample
of spatial data z= (zij) of iid random variables from a
GEV-model, Equation (9), an extension of the standard
log-likelihood, Equation (4), is:

l (𝜓) =
n∑

i=1

k∑
j=1

log g
(
zij;𝜇

(
ri

)
, 𝜎

(
ri

)
, 𝜉
)

, (10)

where 𝜓 =
(
𝜇(0), 𝜇(1), … , 𝜇(p𝜇), 𝜎(0), 𝜎(1), … , 𝜎(p𝜎), 𝜉

)
is the vector of parameters, and g(z) is the density of the
GEV-distribution, Equation (3). The MLE �̂� is obtained
by maximizing the log-likelihood function with respect to
𝜓 . Special attention was paid to the spatial dependence
between the station data. The asymptotic properties of the
independence MLE are well known, but this is not the true
model, because spatial data are often highly correlated.
A solution to account for dependence is ignoring the
dependence initially, thus working with MLE under mis-
specification, and then making adjustments to estimates
of parameter uncertainty (Rotnitzky and Jewell, 1990;
Chandler and Bate, 2007; Zheng et al., in press). More
precisely, one has

�̂� → N
(
𝜓0, I

(
𝜓0

)−1
V
(
𝜓0

)
I
(
𝜓0

)−1
)
, as n → ∞,

(11)
where 𝜓0 is the vector of true parameters, V(𝜓0)=Cov
[∇l(𝜓0)], and I(𝜓0)=−E [∇2l(𝜓0)] the Fisher informa-
tion matrix (∇ and ∇2 denote the gradient and Hessian,
respectively). The information matrix I(𝜓0) is approxi-
mated by I

(
�̂�
)
, which has been included in the standard

output of optimisation routines. The estimation of V(𝜓0)
poses more difficulties, because the naive estimator V

(
�̂�
)

disappears when evaluated at the MLE. A more detailed
discussion on the estimation of V(𝜓0) may be found in
Varin (2008).

Model selection criteria are needed to decide which of
the fitted models should be preferred. We used the Takeuchi
Information Criterion, TIC (Takeuchi, 1976), defined as:

TIC = −2 l
(
�̂�
)
+ 2 Tr

(
I
(
�̂�
)−1

V
(
�̂�
))

, (12)

where l
(
�̂�
)

is the maximized log-likelihood,
Equation (10). TIC is the AIC criterion extended to a
misspecified likelihood function. As with the AIC, the
best model has the lowest TIC value.
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Figure 2. p-Values of Mann–Kendall test statistics for trends in maximum precipitation deficit series. Station number as in Table 1.

4. Results

4.1. Stationarity, time-independence and spatial
correlation

A central assumption in this study is that the precipitation
deficit maxima are stationary in time. The Mann–Kendall
test (McLeod, 2011), which provides information on the
presence of tendencies, was applied to the maxima time
series (52 in total). The p-values range between 0.019
and 0.987, 46 of them are larger that 0.05 (Figure 2),
and indicate that the stationarity of the maxima series is
a likely hypothesis. The four maxima series of Bierset
(station 8) give p-values smaller than 0.05, and range
between 0.019 and 0.025. In addition, maxima series of
Ernage and Forges (stations 6 and 7), for cover type grass,
give a p-value of 0.031. Owing to the limited time series
of PET-data, we decided to include all the series in the
analysis.

Another important assumption when modelling individ-
ual GEV distributions with log-likelihood, Equation (4),
is the time-independence of the maxima series. This can
be tested with a plot of the autocorrelation function, as
shown for the maximum precipitation deficit of grass at
Uccle (Figure 3). The autocorrelation was computed for
lags ranging between 1 and 20, and lies within the 95%
confidence bounds, which are based on an uncorrelated
series. The hypothesis of time-independence can therefore
be accepted at the 5% significance level. Similar results
were obtained for the other series.

Spatial extremes are modelled assuming that the pre-
cipitation deficit maxima are independent in space. This
assumption is, of course, not met in reality, as shown by
the pairwise Pearson correlation test: the hypothesis that
the true correlation coefficient is equal to 0 is rejected
for every pair of precipitation deficit maxima series. The
p-values are at highest 0.004 (water), 0.007 (grass), 0.005
(coniferous forest) and 0.005 (deciduous forest). In addi-
tion, the spatial correlation matrix for water yields values
between 0.5 and 1.0, indicating a strong spatial depen-
dence. In Section 3.2.2. we explained how we obtained
adjusted inference under this model misspecification.

4.2. Single site distribution

The Uccle observations offer a valuable dataset for study-
ing trends. The plot of the maximum precipitation deficit
for grass shows that the driest years 1911, 1921, 1959
and 1976 have above normal precipitation deficit maxima
(Figure 4), whereas the lowest deficits were reached in
the years 1904, 1920, 1930 and 1948. A 30-year moving
average displays no visible temporal trend in precipitation
deficit maxima (Figure 4), which is in accordance with
the statistical trend tests carried out (see Section 4.1). The
GEV distribution, Equation (3), was fitted to the maximum
precipitation deficit, and the parameters of the distribution
were estimated by MLE. This leads to the estimate

𝜇 = 31.02 (1.30) , 𝜎 = 11.80 (1.07) , 𝜉 = 0.253 (0.083) ,
(13)
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Figure 3. Autocorrelation for maximum precipitation deficit at Uccle (grass).

where the values within the parentheses are the corre-
sponding standard errors.

For a good fit of the GEV model, the points of the
quantile plot should lie close to the unit diagonal. The
quantile plots for Uccle (Figure 5, top left) demonstrates
the validity of the fitted model. Similarly, MLE was per-
formed on the other series (Figure 6, cover type: deciduous
forest), and the quantile plots were analysed (Figure 5).
We have also considered the station Mol with the worst
fit, as there is a strong departure from linearity for the 9
highest annual maxima. We used the Cramer-von Mises
goodness-of-fit test for extreme value distributions (Laio,
2004). The p-values are larger than 0.05 (Figure 7), sup-
porting the probable hypothesis that the maxima follow the
GEV distribution. As expected, station Mol has the lowest
p-value, around p= 0.1. In conclusion, there are enough
grounds to support the use of the GEV model.

4.3. Modelling spatial data

Suitable covariates were sought to explain a large part
of the spatial patterns in the extremes. For spatial map-
ping, covariate information is needed at regular grid
points within the entire region. We focus on four read-
ily available geographical covariates: longitude/latitude,
LON/LAT (decimal form), elevation, H (m) and distance to
the sea, D (km). For extreme precipitation, several authors
confirmed that mean annual rainfall is a stronger covari-
ate than elevation (Cooley et al., 2007; Van de Vyver,
2012). Therefore we introduced the climatological covari-
ate mean summer rainfall, MSR (mm). The MSR was
computed over the years 1967–2005, which is also the

period of the annual maxima series. Extensive statisti-
cal testing (not shown) supports the use of combined
covariates, and in particular

√
D∕MSR. Throughout this

work, this is referred to as a composite covariate. The
composite covariate, log( D )+H, was used to interpolate
Makkink evaporation in the Netherlands (Hiemstra and
Sluiter, 2011). This covariate did not lead to satisfactory
results in our case, because Belgium has a more complex
topography than the Netherlands. Because there is a strong
linear correlation between MSR and H (MSR= a0 + a1 H,
with a0 = 337.98, a1 = 0.39, with a correlation ≈ 0.95),
an alternative covariate to

√
D∕MSR was found to be√

D∕
(
a0 + a1 H

)
. In what follows, we use the latter

composite covariate because gridded values of H and D
are available at a regular grid, whereas MSR-values are
obtained by spatial interpolation.

An exploratory analysis to assess the influence of a
covariate on the GEV-parameters was based on scatter
plots. For example, Figure 8 shows the MLEs 𝜇i, 𝜎i and
𝜉i of the ith station, against covariates: distance to the sea,
elevation and the composite covariate. It appears that 𝜇i,
𝜎i are correlated with the covariates, whereas no correla-
tion was found for 𝜉i. For all the covariates, no obvious
inter-site differences in 𝜉i were discernible, and this leads
to the model assumption 𝜉(r)= 𝜉0.

Smooth spatial GEV models GEV [𝜇(r), 𝜎(r), 𝜉(r)],
Equation (9), were estimated by MLE for different covari-
ates (see Section 3.2.2.). The models we compared are
listed in Table 2. M0 is the GEV-model with constant
parameters. Models M1, … , M5 include a covariate in
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(1967–2005).
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Figure 7. p-Values of Cramer–von Mises goodness of fit test (Laio, 2004) for the GEV-distribution (see Table 1 for station numbers).

𝜇(r), but have constant 𝜎(r)= 𝜎0. Models M6, … , M10
include a covariate in both 𝜇(r) and 𝜎(r). The TIC-values
(Table 2) confirm the ability of the covariates to capture
the spatial variability. The models M6, … , M10 are supe-
rior to the intermediate models M1, … , M5. Increasing
model complexity by adding more than one covariate in
the GEV-parameters, as with models M11 and M12, does
not improve model’s performance (in TIC terms).

For the strongest model (M10), the MLE 𝜉 and associated
standard errors computed with Equation (11) are

𝜉W = 0.299 (0.127) , 𝜉G = 0.314 (0.121) ,

𝜉CF = 0.318 (0.123) , 𝜉DF =0.320 (0.122) (14)

However, the actual 𝜉-estimates result in intersecting
return level plots, which is physically not consistent.
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Figure 8. Scatter plot of stationwise GEV-parameters against different covariates (cover type: water). Solid line: best fitting straight line.

For example, the return levels for water must be
higher than those for grass. For 𝜇W (r) > 𝜇G (r), and
𝜎W (r) > 𝜎G (r), the return level plots will not inter-
sect if 𝜉W ≥ 𝜉G. In order to avoid intersection, we
keep the value of 𝜉 fixed for the four cover types,
𝜉 = 0.31. The parameters 𝜇(0), 𝜇(1), 𝜎(0), 𝜎(1) are sub-
sequently re-estimated (Table 3), and we can maintain
the estimated variance/covariance matrix of the original
estimation.

Return level maps for any return period can be computed
with Equation (6). At each grid point ri, the estimated
GEV parameters are 𝜇

(
ri

)
= 𝜇(0) + 𝜇(1)C

(
ri

)
, 𝜎

(
ri

)
=

𝜎(0) + 𝜎(1)C
(
ri

)
and 𝜉 = 0.31 (cfr. Equation (9)), for which

covariate information, C(ri), can be obtained from dig-
ital terrain models. GTOPO30, for example, provides
a global digital elevation model and is freely available
(USGS, 1996). In Figure 9 (left column), we have plot-
ted 20-year return level maps of precipitation deficit (four
cover types), provided by the smooth spatial GEV model

using the strongest covariate,
√

D∕
(
a0 + a1 H

)
. The grid

resolution is 4× 4 km, which is in keeping with cur-
rent state-of-the-art regional climate models (Hamdi et al.,
2012). The maps indicate that the model is able to repro-
duce reasonable values and a similar spatial pattern to the
map of mean annual evaporation (Gellens-Meulenberghs
and Gellens, 1992). The largest values occur along the
coast, while the lowest values are in the hilly region
of the south-east. A great advantage of MLE is that
the standard errors of the spatial return level estimates
can be immediately calculated with the well-known delta
method (Coles, 2001). The bounds of the 95% confi-
dence intervals are shown in Figure 9 (middle and right
column).

4.4. Predictive comparison

The quality of the spatial predictions was assessed with
several model performance scores which are based
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Table 2. TIC-values of spatial GEV-models of the form Equation (9), with 𝜉(r)= 𝜉0.

GEV-model W G CF DF

M0: 𝜇(r)=𝜇0 4667.77 4212.62 4481.53 4355.47
𝜎(r)= 𝜎0

M1: 𝜇(r)=𝜇0 +𝜇1 LON 4661.45 4206.98 4477.14 4350.71
𝜎(r)= 𝜎0

M2: 𝜇(r)=𝜇0 +𝜇1 LAT 4663.16 4207.61 4476.52 4351.30
𝜎(r)= 𝜎0

M3: 𝜇(r)=𝜇0 +𝜇1 H 4667.78 4211.81 4481.65 4355.43
𝜎(r)= 𝜎0

M4: 𝜇(r)=𝜇0 +𝜇1 D 4658.83 4202.90 4473.01 4347.19
𝜎(r)= 𝜎0

M5: 𝜇 (r) = 𝜇0 + 𝜇1

√
D

a0+a1 H
4648.75 4192.91 4464.41 4337.94

𝜎(r)= 𝜎0
M6: 𝜇(r)=𝜇0 +𝜇1 LON 4651.75 4202.64 4468.43 4346.48

𝜎(r)= 𝜎0 + 𝜎1 LON
M7: 𝜇(r)=𝜇0 +𝜇1 LAT 4653.90 4203.03 4469.61 4345.47

𝜎(r)= 𝜎0 + 𝜎1 LAT
M8: 𝜇(r)=𝜇0 +𝜇1 H 4662.52 4212.58 4478.75 4355.75

𝜎(r)= 𝜎0 + 𝜎1 H
M9: 𝜇(r)=𝜇0 +𝜇1 D 4648.42 4198.56 4464.85 4342.11

𝜎(r)= 𝜎0 + 𝜎1 D

M10: 𝜇 (r) = 𝜇0 + 𝜇1

√
D

a0+a1 H
4635.94 4184.37 4451.21 4327.50

𝜎 (r) = 𝜎0 + 𝜎1

√
D

a0+a1 H

M11: 𝜇 (r) = 𝜇0 + 𝜇1

√
D

a0+a1 H
+ 𝜇2 LON 4637.21 4187.65 4452.65 4330.31

𝜎 (r) = 𝜎0 + 𝜎1

√
D

a0+a1 H

M12: 𝜇 (r) = 𝜇0 + 𝜇1

√
D

a0+a1 H
+ 𝜇2 LON 4639.15 4189.41 4455.03 4332.13

𝜎 (r) = 𝜎0 + 𝜎1

√
D

a0+a1 H
+ 𝜎2 LON

Best performing models are indicated in bold.

Table 3. MLEs 𝜇(0), 𝜇(1), 𝜎(0), 𝜎(1) and the associated standard errors (in parentheses) of the spatial GEV model M10 (see Table 2),
with 𝜉 = 0.31.

Cover type 𝜇(0) (mm) 𝜇(1) (−) 𝜎(0) (mm) 𝜎(1) (−)

Water 61.88 (4.47) −35.03 (5.49) 26.96 (3.43) −19.76 (4.32)
Grass 40.87 (2.38) −20.28 (2.84) 15.87 (2.09) −10.28 (2.83)
Coniferous forest 52.31 (3.43) −28.11 (4.11) 22.22 (2.83) −16.20 (3.54)
Deciduous forest 46.36 (2.80) −23.48 (3.39) 18.82 (2.44) −12.88 (3.20)

on a comparison between observed and predicted val-
ues. Suppose we have annual maxima data zij at a
given station i= 1, … , n, and a spatial estimator GEV
[𝜇 (r) , 𝜎 (r) , 𝜉]. We compute goodness-of-fit scores with
the leaving-one-out methodology which means that the
observations of the ith station are removed, and the
spatial model is estimated on the remaining data. The pre-
dicted values from GEV

[
𝜇
(
ri

)
, 𝜎

(
ri

)
, 𝜉
]

are compared
with the observations of the ith station, and the whole
methodology is repeated for each station i= 1, … , n.

Four goodness-of-fit scores were used: the root mean
square error (RMSE), the mean absolute error (MAE),
the maximum prediction error (MPE), and the bias. Let
zi(1) ≤ … ≤ zi(k) be the sorted annual maxima zij at a given

station i. As for sitewise GEV estimations (Section 4.2),
the empirical probability pj =P{z< zi(j)} is approximated
by the Weibull plotting position. zi(j) can be compared with

the pj-quantile of GEV
[
𝜇
(
ri

)
, 𝜎

(
ri

)
, 𝜉
]
, here denoted

by qij. The latter is given by Equation (6), where 𝜇 and
𝜎 are replaced by spatially modelled values 𝜇

(
ri

)
and

𝜎
(
ri

)
, and where T is replaced by the empirical return

period 1/(1− pj):

qij = 𝜇
(
ri

)
−

𝜎
(
ri

)
𝜉

{
1 −

[
− log

(
pj

)]−𝜉}
(15)

The scores for quantile comparison at the ith station (zi(j)
vs qij) are then given by

© 2015 Royal Meteorological Society Int. J. Climatol. (2015)



EXTREME PRECIPITATION DEFICIT

90
 95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200

20−year return levels

50 km

Water

60

 65

 70

 75

 80

 85

 90

 95

100

105

110

115

120

50 km

Grass

75

 80

 85

 90

 95

100

105

110

115

120

125

130

135

140

145

150

155

160

50 km

Coniferous forest

65

 70

 75

 80

 85

 90

 95

100

105

110

115

120

125

130

135

140

50 km

Deciduous forest

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

50 km

Coniferous forest

90
 95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195

50 km

Deciduous forest

80

 85

 90

 95

100

105

110

115

120

125

130

135

140

145

150

155

160

165

50 km

Grass

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270
Upper bound 95 % CI

50 km

Water

40

45

50

55

60

65

70

75

80

85

90

95

100

50 km

Coniferous forest

35

40

45

50

55

60

65

70

75

80

85

50 km

Deciduous forest

45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

100

105

110

115

120
Lower bound 95 % CI

50 km

Water

34
36

38

40

42

44

46

48

50

52

54

56

58

60

62

64

66

68

70

72
74

50 km

Grass

Figure 9. 20-Year return level maps, and bounds of the 95% confidence intervals (CI) for precipitation deficit (mm), obtained by the spatial GEV
model M10 (see Table 2).

RMSEi =

(
1
k

k∑
j=1

(
zi(j) − qij

)2

)1∕2

,

MAEi =
1
k

k∑
j=1

|||zi(j) − qij
||| ,

MPEi = maxj∈{1,… ,k}
|||zi(j) − qij

||| ,
BIASi =

1
k

k∑
j=1

(
zi(j) − qij

)
(16)

As a reference, we compare the scores corresponding
to fitting a GEV distribution to each station separately,
without any spatial model. For the sitewise distribution
GEV

[
𝜇i, 𝜎i, 𝜉i

]
, the pj-quantile is

q∗ij = 𝜇i −
𝜎i

𝜉i

{
1 −

[
− log

(
pj

)]−𝜉i

}
,

and the corresponding scores are obtained when replacing
qij by q∗ij in Equation (16).
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Figure 10. Goodness-of-fit scores. Sitewise GEV distribution (coniferous forest).

The scores for the sitewise GEV model, and the smooth
spatial GEV model are displayed in Figures 10 and 11 in
the case of coniferous forest. It can be seen that the sitewise
GEV fit for station Mol is not satisfactory. Specifically, the
MPE value, Equation (16), is very large, due to large esti-
mation errors of 𝜉 which produce strong overestimations
of the largest observations. With the exception of station
Mol, the sitewise estimator performs better than the spatial
estimator.

An overall picture of the goodness-of-fit can be obtained
by averaging the sitewise scores, Equation (16), over n
stations. We get the following overall scores:

RMSE =

(
1
n

n∑
i=1

RMSE2
i

)1∕2

, MAE = 1
n

n∑
i=1

MAEi,

MPE =1
n

n∑
i=1

MPEi. (17)

The overall scores, Equation (17), indicates that the
sitewise estimator performs slightly better than the spatial
estimator (Table 4). In view of this promising result, there
are enough grounds to support the use of spatial models
for extremes in regional drought studies.

In Figure 12 we plotted the 20-year return levels of
the sitewise and the smooth spatial GEV model. This
comparison is between two estimators, and not between an
estimator and an observation. Therefore, we have added

the observed 20-year return levels to the plots, which
were computed using ranking. The ranks j20 and j20 + 1 of
zi(1) ≤ … ≤ zi(k), which are closest to the observed 20-year
return level, can be found by solving the inequalities,
pj ≤ 1− 1/20≤ pj+ 1, to j. The observed 20-year return level
is then derived by linear interpolation from zi(j20) and
zi(j20+1). All the plots agree with the goodness-of-fit scores

of Figures 10 and 11.

5. Discussion

This work highlights the benefit of EVT for drought
studies. The precipitation deficit is defined as a
rainfall-evapotranspiration balance, and the summer
half-year maxima (1 April–30 September) are used to
identify droughts. The PET-data were calculated from 13
weather stations across Belgium. We applied our methods
to data recorded during the years 1967–2005, except for
the Uccle data which cover the years 1901–2005. The
stationarity of the precipitation deficit maxima series, a
common assumption in many time series techniques, was
confirmed with the Mann–Kendall trend test. In addition,
the time-independence of the series was confirmed with
the autocorrelation function.

The GEV distribution could be successfully fitted to
maximum precipitation deficits, despite the fact that
daily observations are not independent and identically
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Figure 11. Goodness-of-fit scores. Spatial GEV model M10, see Table 2 (coniferous forest).

Table 4. Scores of quantile comparison when (a) fitting a GEV to each station separately; and (b) spatial GEV modelling with M10
(see Table 2).

Water Grass

RMSE MAE MPE RMSE MAE MPE

(a) Sitewise GEV 9.50 3.93 39.12 9.31 3.09 36.22
(b) Smooth GEV 10.57 5.52 39.53 8.55 3.86 33.18

Coniferous forest Deciduous forest

RMSE MAE MPE RMSE MAE MPE

(a) Sitewise GEV 10.39 3.64 39.75 9.47 3.31 37.43
(b) Smooth GEV 9.97 4.88 38.56 9.71 4.51 38.44

Unit of the scores is mm.

distributed. However, for a large number of classes of
dependent sequences, EVT can be applied for descrip-
tive or predictive purposes (Leadbetter et al., 1983). To
date only Beersma and Buishand (2004, 2007) applied
EVT to model precipitation deficit which they defined
as the difference between precipitation and evaporation.
Return level estimations based on the GEV distribution
for extreme precipitation deficit are particularly useful for
insurances as they provide information on the probability
of occurrence and the associated magnitude of drought.

An important statistical contribution of this work lies in
the development and application of extreme value analysis
yielding return level maps of precipitation deficit for water,
grass, coniferous and deciduous forest. Spatial modelling

of precipitation deficit in the context of extremes is
unprecedented and allows to define extreme value distri-
butions across a region on the basis of carefully selected
covariates. By performing the spatial analysis on locations
defined by covariates, we are able to model regional dif-
ferences in extreme precipitation deficit. The composite

covariate
√

D∕
(
a0 + a1 H

)
(a0 = 337.98, a1 = 0.39) pro-

vides the best fits with the advantage that elevations (H)
and distances to the sea (D) are available at a regular grid
to represent a continuous surface. The modelling of the
GEV-parameters is based on linear relationships with the
covariates. A smooth spatial structure is an intrinsic feature
of the model. Introducing several degrees of complexity
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Figure 12. The 20-year return levels of maximum precipitation deficit (mm). GEV-models versus observations.

and non-linearity in covariate dependent modelling is
possible, provided the availability of gridded covariate
data. However, for a fit to 13 sites we restricted the devel-
opment to parsimonious models. A constant shape param-
eter is a common assumption in smooth spatial GEV
modelling (Gellens, 2002; Cooley et al., 2007; Sang and
Gelfand, 2009; Blanchet and Lehning, 2010; Padoan et al.,
2010; Northrop and Jonathan, 2011; Westra and Sisson,
2011; Van de Vyver, 2012; Dyrrdal et al., 2015). The
smooth spatial GEV model combines data from single sites
so that the estimation errors can be obtained directly. The
overall scores of the spatial models are promising because
they do not differ that much from the goodness-of-fit
scores of the sitewise GEV model.

This analysis can be extended in various ways. A mea-
sure of drought severity can be refined by quantifying
the precipitation deficit for multiple time scales. The
use of multivariate extreme value analysis is particularly
attractive in this context (Beirlant et al., 2004). The def-
inition of precipitation deficit can be extended to include
soil moisture or vegetation performance (Williams et al.,
2012), or in an operational context to estimate return
periods from extreme deficits and vice versa.

6. Conclusions

Quantitative indicators are important for an overall per-
spective on drought over a region. We defined precipitation

deficit as a cumulative difference between precipitation
and evapotranspiration for water, grass, coniferous and
deciduous forest. The highest deficits invariably occur
during the summer half year (April–September) and are
stationary during the observation period. Smooth spatial
GEV modelling using linear relationships between GEV
parameters and a composite geographical covariate com-
prising elevation and distance to the sea allowed for direct
estimations of return levels and associated errors. Model
performance metrics and statistical scores for spatial GEV
modelling were similar to sitewise GEV models, but the
sitewise GEV models fit the observations better. Smooth
spatial GEV modelling can overcome datasets with a poor
spatial coverage because information transfer between
sites allows for improved inferences. The model develop-
ment can therefore be extended to include closely linked
features such as moisture deficit or to explore vegetation
performance and vulnerability.
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